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Abstract

Beliefs about personal health risks shape health decisions, and researchers have long
studied these beliefs through surveys. However, none have tested whether monetary
incentives increase thoughtful or truthful responses. This paper tests whether such
incentives improve the accuracy of elicited beliefs about personal health risks. I also
evaluate the role of confidence in health expectations by comparing two response modes
- point estimates, and complete belief distributions - in a 2×2 treatment design. In an
online sample of U.S. adults, I elicit subjects’ beliefs about their risk of common chronic
health conditions, which I compare to highly personalized statistical estimates. Monetary
incentives reduce error size by 4.8 percentage points when subjects report complete belief
distributions, but have no effect on point estimates. Importantly, beliefs more strongly
predict preventive health behaviors when they exhibit high confidence, suggesting that
eliciting both risk perceptions and confidence may improve our understanding of health
decisions.
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1 Introduction

To make optimal health decisions, individuals require an understanding of their own
health risks. Biased beliefs about disease risk can lead to inefficient health investments,
causing individuals to incur unnecessary costs or underinvest in preventive care. Despite a
high national death toll from preventable chronic disease (Garcia, 2019), fewer than 10% of
American adults receive all high-priority preventive services recommended to them (Borsky
et al., 2018). Understanding discrepancies like this one requires studying not only objective
health risks but also how individuals assess their risks themselves. Research has shown that
the measuring of subjective health expectations provides unique insights beyond what can be
learned from objective risk calculations alone (Sloan, 2024).

For over 30 years, researchers have measured beliefs about health risks through surveys,
showing these beliefs help explain important economic decisions like retirement, savings, and
insurance choices. However, existing data exhibit recurring patterns - bunching of reports
at 0, 50, and 100%, large overestimation of rare events, and other irregularities suggesting
that current methods lead to measurement error (Hudomiet et al., 2023). While monetary
incentives are widely used in experimental economics to address such issues and motivate
truth-telling, they have not yet been applied to improving the accuracy of health belief
measurements.

This paper makes three main contributions. First, it provides the first experimental
test of whether incentive-compatible monetary rewards improve the accuracy of elicited
beliefs about personal health risks. Second, it evaluates whether eliciting complete belief
distributions, rather than point estimates, allows for better measurement by capturing both
bias and confidence. Third, it reveals that confidence moderates the power of beliefs to
predict preventive health behaviors - a finding with important implications for both research
methodology and health policy.

Using an online sample of 490 American adults, I implement a 2×2 experimental design
varying both monetary incentives and response formats. After collecting detailed health
profiles, I estimate each participant’s health risks for a set of chronic diseases using machine
learning and clinical risk calculators. I then elicit their subjective beliefs about these same
health risks, comparing these to the personalized objective estimates. Subjects in incentivized
treatments are scored for accuracy using a binarized quadratic scoring rule adapted from
Harrison et al. (2017), where subjects report their subjective beliefs. Half of subjects report
full belief distributions, communicating their confidence by allocating 100 tokens across the
probability support, while the remainder allocate only one token, reporting a point estimate
in a manner similar to much of the preexisting work eliciting probabilistic health expectations.
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The results reveal several key patterns. First, monetary incentives improve the accuracy of
reported beliefs, but only when subjects can communicate complete distributions - reducing
mean absolute error by 4.8 percentage points. When limited to point estimates, incentives
show no significant effect on accuracy. Second, subjects systematically overestimate their
risk of low-probability health outcomes, particularly for conditions like stroke and skin
cancer where objective risks are small. Third, I find beliefs more strongly predict preventive
health behaviors when they exhibit high confidence, suggesting that the ability to measure
confidence through distributional responses provides valuable information for understanding
health decisions.

The paper proceeds as follows. Section 2 reviews related research on the accuracy of health
expectations and introduces the framework for incentivized belief elicitation. Section 3 details
the experimental design, including methodological solutions for three challenges: estimating
personalized health risks, implementing incentive-compatible scoring rules, and detecting
online searching. Section 4 presents the main results on accuracy and effort across treatments,
and examines the relationship between beliefs, confidence, and preventive behaviors. Section 5
concludes and discusses implications for survey design and health policy.

2 Background

2.1 Eliciting Health Expectations

A substantial body of work explores the relationship between subjective beliefs and
health behaviors. Since the 1960’s, researchers in public health and health psychology have
elicited mostly qualitative assessments of subjective risk, aligning with various psychological
models of behavior (Rosenstock, 1974; Rogers, 1975). While these measures have been shown
to correlate with health behaviors (Carpenter, 2010), qualitative responses prohibit the
evaluation of beliefs for numerical accuracy and present substantial challenges with regard
to interpersonal comparability. Numerical subjective probabilities can also be implemented
directly into life cycle models, allowing economists to evaluate their influence on decisions
like retirement, savings, and life insurance enrollment.

Health economists began studying probabilistic measures of health beliefs primarily fol-
lowing the introduction of mortality expectations in the Health and Retirement Study (HRS).
Mortality expectations of this kind have been shown to play a role in many major economic
decisions. Smith et al. (2001) found these beliefs to be predictive of mortality outcomes,
even when objective health risks are controlled for, and that beliefs shift appropriately as
respondents’ health status changes over time. Researchers have also evaluated the accuracy of
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HRS mortality expectations, documenting a consistent “flatness bias,” in which respondents
tend to underestimate their probability of living to younger ages, but overestimate their
chances of survival to ages beyond 80 (Perozek, 2008; Elder, 2013).

Research on the accuracy of health expectations has since expanded to other population
surveys and health topics, including chronic disease. Khwaja et al. (2009) compare subjective
probabilities of developing lung disease, heart disease, and stroke by age 75 to objective
estimates derived from HRS data, finding that individuals tend to overestimate these risks.
Carman and Kooreman (2014) find that women overestimate their probability of breast
cancer in the next five years, where the mean subjective probability is 19.1%, over 20 times
higher than the objective rate of 0.9%. Similarly for heart disease, their subjects report a
mean probability of 16.4%, while the true probability of new diagnosis is 6.4%.

This quantitative economic research on health expectations has established a number
of empirical regularities. Individuals appear to be largely insufficiently informed about
population-level probabilities, with substantial dispersion of aggregate beliefs (Sloan, 2024).
Despite this aggregate uncertainty, there appears to be no systematic under- or over-estimation
of beliefs, except in the case of an observed center-biased tendency for subjects to report
probabilities closer to 0.5 when the true answer lies particularly close to 0 or 1 (Hudomiet
et al., 2018; Carman and Kooreman, 2014; Giustinelli et al., 2022). Subjective beliefs about
health have also importantly been shown to contain private information that is typically
uncaptured by public health surveys. This information enables health expectations to provide
meaningful power for improving predictions of future health outcomes (Hurd and McGarry,
2002).

In addition to patterns that may be explained by underlying beliefs, several features
are present in health expectations data that prevailing methods lead subjects to misreport,
report distorted probabilities, or employ limited effort. In the HRS, 30 percent of subjects
report an equal chance of living to ages 75 and 85, about one-third of which reported their
probability of survival as precisely 1 (Hurd and McGarry, 1995). Many studies also document
substantial bunching of reports at 0, 50, and 100 percent, as well as a considerable degree of
rounding (Manski and Molinari, 2010; Bruine De Bruin and Carman, 2012). Overestimation
of low probability outcomes has also been shown to occur to implausible degrees in some
cases (Fischhoff et al., 2000). Hudomiet et al. (2023) also decompose the flatness bias in
mortality expectations from the HRS, arguing that the bias can be explained by a general
center-bias in elicited probabilities, rather than a true property of beliefs about survival.

These results beg the question as to whether the measurement of health expectations
can be improved via alternative belief elicitation methods. Experimental economists have
developed a host of such methods with the intention of improving data quality by aligning
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incentives with truth-telling and ensuring sufficient subject effort. Work in this area has
focused on constructing theoretically-sound and behaviorally incentive-compatible mechanisms
that subjects can understand. Experimenters have also developed response modes and payoff
mechanisms to elicit full belief distributions, allowing for the evaluation of both accuracy and
confidence of beliefs. This paper seeks to introduce these established experimental methods
to research in health expectations and to evaluate their efficacy in this domain.

2.2 Incentives

Experimental economists have long argued that monetary incentives are essential for
aligning subjects’ behavior with experimental objectives and ensuring adequate effort. Smith
(1982) establishes key precepts for maintaining experimental control, emphasizing that
motivation for desired behaviors (in this case, truth-telling) must be salient, and subjects must
be non-satiated in rewards. This requires monetary incentives be large enough that rewards for
accurate reporting meaningfully influence subjects’ utility and dominate competing motives
to misreport or exert minimal effort. Without this feature, other motives may outcompete
the induced preferences an experimenter hopes to test.

Although monetary incentives are standard practice in experimental economics, they have
not yet been applied to elicit beliefs about personal health risks, despite clear potential for
competing motives. Subjects may choose not to apply effort to cognitively demanding tasks
in an uncertain environment like health outcomes. High risk subjects may also be inclined
to report lower probabilities to justify past health behaviors or avoid negative emotions
(Festinger, 1962). Respondents may even misrepresent their beliefs out of social desirability
concerns (Zizzo, 2010). To overcome these competing motives, sufficiently-scaled incentive-
compatible monetary rewards can create a salient and dominant driver for thoughtful and
truthful reporting.

Tests for the effects of incentives on belief elicitation outside of health have yielded mixed
results. Some studies find incentive-compatible mechanisms improve belief performance in
games (Gächter and Renner, 2010; Wang, 2011). Harrison (2014) documents a variety of
hypothetical biases related to beliefs about economic indicators and national-level health
outcomes. A lack of incentives has also been shown to amplify the frequency of bunched
responses (Burfurd and Wilkening, 2022). Trautmann and van de Kuilen (2015) find that
unincentivized belief measurements in a two-player game yield similar accuracy compared to
several incentivized revealed preference mechanisms. However, they also find that incentivized
methods are better predictors of participants’ own behavior compared to introspection. Danz
et al. (2022) find that providing detailed information to subjects on the binarized quadratic
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scoring rule (BSR) increases center-biased deviations from the truth, and that subjects
perform better when they are simply told that truth-telling is in their best interest.1

Incentivizing accurate reports of personal health beliefs presents distinct methodological
challenges. Unlike laboratory experiments where outcomes can be immediately verified, health
outcomes unfold over long time horizons. This leaves researchers with two options: either
follow subjects longitudinally to observe and reward based on realized outcomes, or develop
reliable estimates of personalized health risks that account for subjects’ private information.
Previous work implementing incentivized belief elicitation in health has largely focused on
full population-level statistics that could be immediately verified (Di Girolamo et al., 2015;
Harrison et al., 2022). This paper advances the literature by implementing a model that
generates highly personalized risk estimates conditioned on detailed individual health profiles,
enabling incentive-compatible elicitation of beliefs about personal health risks.

2.3 Subjective Belief Distributions

Eliciting complete belief distributions may also provide substantial value for health
researchers compared to capturing only point estimates. From a data quality perspective,
Engelberg et al. (2009) show that when a point forecast and belief distribution are elicited from
the same macroeconomic forecasters, more than 20% of point forecasts show no correspondence
with the mean, median, or mode from the distributional forecast for the same outcome. Bruine
De Bruin and Carman (2012) also show that bunching of reports at 50% is explained in part
by subjects with a lack of confidence in their beliefs. By eliciting complete distributions, this
circumvents any inconsistent approaches that participants may use to reduce their beliefs to
a singular summary statistic, allowing the researcher to do so in a consistent manner.

Differentiating between beliefs of high and low confidence is also of considerable normative
importance for understanding health behaviors. If subjects with biased beliefs report wider
distributions (i.e. have lower confidence), this is normatively very different than if they are
biased but submit degenerate reports (maximum confidence). High confidence and high bias
could lead to suboptimal health decisions, while low confidence and high bias may simply

1Danz et al. (2022) provide results only for the elicitation of point estimates. As Danz et al. (2024)
also state, while their results “make clear that something in the binarized and quadratic-scoring rule is
malfunctioning, it is not clear what.” In the case of eliciting full distributions - a key experimental feature of
this paper, as detailed in Section 2.3 - a simple request for truth-telling has more ambiguous implications
for how subjects should best respond. Without a consistent means to weigh the reporting of low or high
confidence, subjects may interpret what constitutes a “true” belief distribution in a myriad of ways, limiting
interpersonal comparability. Further, theoretical results from Harrison et al. (2017) find that distortionary
effects of risk aversion should manifest as “flattening” of reported distributions, rather than shifts to center as
highlighted in Danz et al. (2022). As such, I default to clearly informing subjects of their potential rewards in
incentivized belief elicitation tasks to ensure greater consistency in the interpretation of incentive mechanisms
across subjects.

5



result in individuals seeking more information. In doing so, they may reduce their bias as
well.

Differentiating between beliefs of high and low confidence is of considerable normative
importance for understanding health behaviors. If subjects with biased beliefs report wider
distributions (i.e., have lower confidence), this is normatively very different than if they
are biased but submit degenerate reports (maximum confidence). High confidence and
high bias could lead to suboptimal health decisions, while low confidence and high bias
may simply result in individuals seeking more information. Despite these clear benefits,
relatively few studies capture measures of confidence or imprecision in health beliefs. Several
have examined methods for eliciting probability ranges, where participants convey their
confidence by providing a point estimate along with a probability interval denoting minimum
and maximum values (Delavande et al., 2024). Others implement a response format where
subjects first report a point estimate and then subsequent probing questions allow for the
optional report of an interval (Giustinelli et al., 2022). Results from these elicitation methods
have demonstrated that many subjects do hold imprecise subjective beliefs, and importantly,
that this imprecision matters. For instance, Kerwin and Pandey (2023) shows that individuals
with more imprecise beliefs about HIV transmission have a greater propensity to update their
beliefs in response to new information. However, such approaches present methodological
challenges when attempting to generate summary statistics of individual or aggregate beliefs,
or to incentivize subjects for accuracy. Elicitation of a complete distribution, as in this paper,
allows for consistent incentivization and analysis of belief accuracy.

2.4 Proper Scoring Rules

In order to properly motivate truth-telling in belief elicitation, monetary incentives require
the implementation of a scoring rule. Beyond concerns of competing motives like cognitive
complexity and effort level, some scoring rules incentivize subjects to distort their reports
on account of risk aversion. Researchers thus place a focus on “proper” scoring rules, where
truth-telling is incentive-compatible. Among the most popular of these mechanisms is the
Quadratic Scoring Rule (QSR), where subjects are penalized according to the squared error
of their answer relative to a realized outcome (Brier, 1950; Matheson and Winkler, 1976).
As outlined in Harrison et al. (2017), the QSR can be modified to elicit belief distributions
over a continuous support. By partitioning the domain over which subjects can report into
K intervals and denoting rk the report of the likelihood that the event falls in interval
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k = 1, 2, ..., K, if the true value of lies in interval k, then the QSR payoff is defined as:

S = α + β

[
(2× rk)−

K∑
i=1

(ri)
2

]
, (1)

where α and β are parameters that can be set to scale payoffs as desired.
If subjects are risk neutral, this formulation of the QSR is a truth-revealing mechanism.

However, as proven by Harrison et al. (2017), risk-averse agents will maximize their subjective
expected utility by reporting a “flattened” belief, such that a maximally risk-averse agent
would report a uniform distribution across the support of their latent belief distribution.
Hossain and Okui (2013) show that a binary lottery procedure paired with the QSR results
in a theoretically incentive compatible scoring rule independent of risk-preference, assuming
subjects maximize subjective expected utility. This procedure requires that subjects are paid
in probabilities rather than dollars, where probabilities correspond to the chances of earning
the larger of two monetary prizes. Several studies have also shown that the inclusion of a
binary lottery procedure improves performance of the QSR in a lab setting (Hossain and
Okui, 2013; Harrison et al., 2013; Erkal et al., 2020). I operationalize these findings in my
experiment by binarizing QSR payoffs in incentivized treatments.

3 Experimental Design

I construct a 2×2 treatment design, varying the use of distributional reporting and
monetary incentives for accuracy between subjects. This treatment structure allows me to
identify whether incentives and distributional reporting are complements that enhance each
other’s effectiveness, or whether one feature alone is sufficient to effectively measure health
expectations. The treatment naming structure is shown below in Table 1.

Point Estimates
(1 Token)

Distributions
(100 Tokens)

No Incentives N1 N100

Incentives I1 I100

Table 1: 2×2 Treatment Structure

3.1 Subject Pool and Recruitment

I recruit subjects from Prolific, limiting the sample to American adults aged 35 to 74.
Table 2 displays demographic characteristics of the sample. Of note, subjects were predomi-
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nantly non-Hispanic white (73 percent) and well-educated (52 percent hold a bachelor’s degree
or higher). 82 percent of subjects report having at least one chronic disease, predominantly
high blood pressure, high cholesterol, arthritis, and diabetes. These subjects were experienced
online study participants; the median number of approved Prolific study submissions is 703.
Using Prolific’s device restriction settings, subjects were also allowed to participate only from
a computer, and could not access the experiment from a phone or tablet.

In initial experimental sessions, 46 subjects were each paid $12 for their participation,
independent of monetary incentives for accuracy in incentivized treatments. The median
completion time for the study was lower than anticipated at 18 minutes, resulting in a
participation payment rate of $40/hr. To align with the upper bound of Prolific’s recommended
payment rate of $8 to $16/hr and to increase remaining sample size, the participation payment
for the remaining 444 subjects was reduced to $8, while incentives for accuracy were unchanged.
Subjects did not learn their treatment condition in advance; only the participation payment
was shown to them before they agreed to participate. Zhong et al. (2024) report that variation
in offered participation payments of similar magnitude had little impact on participation
rates.

3.2 Incentives

Payoffs were determined according to a Binarized Quadratic Scoring Rule for discrete
belief distributions (detailed in Section 2.4) adapted from Harrison et al. (2017). In simple
terms, subjects reported their beliefs by allocating tokens to potential outcomes. A subject’s
token allocation and the correct answer (their personalized risk estimate) together determined
the number of points they earn for each task. One task was selected at random for payment,
and the points earned in that task dictated the percentage chance the subject earned the
larger of two monetary prizes.

To report beliefs, subjects allocated “tokens” across 10 “bins.” Bins correspond to a discrete
set of equal-sized intervals spanning the probability support from 0 to 1. By allowing subjects
to report belief distributions, subjects maximize subjective expected utility by reporting
their true latent belief. The choice of ten bins balanced two competing objectives: allowing
subjects to report distributions with sufficient precision, while keeping the interface simple
enough for intuitive allocation of tokens. In addition to the well-documented rounding to
the nearest multiple of 5 or 10 typically observed in elicitation of probabilistic expectations,
Delavande et al. (2011) also present results that probabilistic expectations are robust to
variations in elicitation design, including the choice of support intervals.
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Figure 1: Task Interface with Example Token Allocation

As payoffs are binarized, subjects can earn two potential monetary prizes - $5 or $25.
Instead of converting QSR scores to dollars directly, subjects earn points, p. By setting both
α and β to 50, points can range from 0 to 100. For payment, a random number, q, is drawn
from 0 to 100 on a uniform distribution. If p <= q, subjects earn $25, or $5 if p > q. By
doing so, a subject’s QSR score is equal to their percentage chance of earning the larger
prize. If a subject is certain in their answer, they can allocate all 100 tokens to one bin. This
will ensure they earn the larger prize if the correct answer falls in this bin, and the smaller
prize otherwise. If a subject is totally uncertain, they can allocate 10 tokens to each bin and
receive a guaranteed number of points, independent of the correct answer. After all tasks
were completed, the score from one task was selected at random for payment.

3.3 Response Modes

The key distinction between response modes was the number of tokens available to
subjects. In distributional treatments, subjects received 100 tokens to allocate across bins,
while subjects in point estimate treatments received only one token to place in a single
bin. Figure 1 shows the task interface for a distributional treatment, which included a bar
chart displaying potential points. This chart also dynamically updated as subjects adjusted
their allocations. In point estimate treatments, the implemented formulation of the QSR
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is inherently simplified, such that a subject receives the larger prize for allocating their
token to the correct bin, and the smaller prize otherwise. The scoring chart was thus not
displayed for point estimate treatments as it did not provide informative value to subjects.
After completing all tasks and the post-task questionnaire, subjects were shown their token
allocation, the correct bin, and their final score for each task.

3.4 Pre-Task Questionnaire

After consenting to participate, subjects completed a pre-task survey to provide a detailed
health and demographic profile used for personalized risk estimation. First, subjects read the
definition of each health condition of interest, and reported their overall level of familiarity
with the causes, risk factors, and symptoms of the condition. Subjects then answered a
set of health and demographic questions that match those used in the National Health
and Nutrition Examination Survey (NHANES) administered by the US Centers for Disease
Control. Predictor variables include information relating to: age, sex, height, weight, gender,
diet, alcohol use, smoking, physical activity, race, education, income, marital status, insurance
coverage, healthcare utilization, condition diagnoses, and family health history. Later, subjects
were also informed that when a question referred to someone “like them,” this meant that the
correct answer was personalized to them based on their own survey responses, and relied on
statistical estimates. Figure 2 shows a screenshot of this page in the subject instructions.

3.5 Task Types

Subjects completed 10 health belief elicitation tasks, following two formats. Tasks either
elicited a subject’s belief about the prevalence of a condition, or about the chance of developing
a condition in the next 10 years. All quantities were presented in natural frequency terms (e.g.,
“X out of 100 people”), which have been shown to improve subject comprehension compared
to probability formats (Gigerenzer and Hoffrage, 1995). Health condition definitions, as
specified for subjects, are listed in Appendix Section A.2

2Beliefs in each task type can be interpreted in slightly different ways. Ten-year risk assessments relate
directly to the probability of a subject’s future health outcomes, making them more relevant for preventive
health decisions. At the same time, future risk assessments may lead subjects to consider eventual changes in
health status, income, medical advancements, and other influencing factors, as argued by Perozek (2008).
Prevalence tasks, by contrast, focus on assessing the current health status of a population matching the
subject’s profile. This approach avoids uncertainties tied to future projections but may be less applicable
to forward-looking health decisions. Additionally, because prevalence estimates are based on cross-sectional
data, where outcomes and predictors are measured simultaneously, they do not account for variations in past
health behaviors that might shape current disease status. In both cases, with incentives tied to statistical
estimates rather than realized outcomes, these tasks primarily assess health literacy through a personalized
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3.5.1 Prevalence

Tasks eliciting beliefs about the prevalence of a condition provided the following prompt:

“Consider 100 people like you. On average, how many would you expect to have
ever had ?”

Each subject reported their belief about the prevalence of 8 chronic conditions - heart disease,
diabetes, stroke, high blood pressure, high cholesterol, arthritis, skin cancer, and all other
cancers (excluding skin cancer). Prevalence in this setting is defined as the proportion of a
given subpopulation to have ever been diagnosed with one of these conditions. This format
allows for consistency with the question formats in the population survey data used to
estimate risks (detailed in Section 3.5.1 and Section B), where survey respondents report if a
doctor ever diagnosed them with a given condition.

Prevalence was estimated using a machine learning ensemble prediction algorithm, adapting
the approach of Einav et al. (2018). The model was trained on data from the NHANES
years 1999 to 2018, where survey items mirror the question format from the experimental
pre-task questionnaire. The NHANES dataset was chosen for its rich set of health predictor
variables, especially relating to family history of diabetes and heart disease. Family history is
particularly important to include as a predictor, as medical studies have established family
history as a critical risk factor, and other work has demonstrated subjects have greater
distrust in tailored health risk estimates if calculators fail to include sufficient personal and
family history (Scherer et al., 2013).

The complete algorithm is an ensembling of three models: random forest, gradient boosting,
and LASSO. Combining multiple models enhances flexibility and robustness, making it well-
suited for application to multiple health outcomes, as in this study. This approach captures
nonlinearities, interactions, and other unique data features that a standard linear probability
model may overlook. To train each model and avoid overfitting, I subset the data into a
“train” sample, used to develop the algorithm, and a “test” sample, withheld from training,
to validate model performance. Appendix Section B details the training steps employed for
the algorithm, and shows that the training and ensembling process produces reliability and
performance comparable to other work using machine learning to estimate health risks. This
model also performs well on out-of-sample prediction when used with other common health
datasets and, importantly, among the recruited subject pool.

framework rather than a strict individual risk analysis. While the interpretive nuances vary, I show that risk
estimation methods perform well and treatment effects are consistent across task types.
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3.5.2 10-Year Risk

10-year risk tasks elicited beliefs about the probability of developing a condition in the future.
This prompt read:

“Consider 100 people like you who have not had . On average, how many
would you expect to develop in the next 10 years?”

These beliefs were elicited for the probability of developing diabetes and breast cancer. Any
subjects with a prior diagnosis of diabetes or breast cancer were excluded from 10-year risk
tasks, and males were excluded from the breast cancer task entirely.

10-year risks were estimated using standard clinical risk tools. For breast cancer risk,
I employ the National Cancer Institute’s Breast Cancer Risk Assessment Tool (BCRAT),
also known as the Gail Model (Gail et al., 1989; Banegas et al., 2017; Zhang, 2020). The
tool takes women’s medical, reproductive, and first-degree family health history as inputs
to estimate the probability of developing breast cancer over a chosen interval. This tool is
used by approximately 40% of physicians practicing in family medicine, internal medicine, or
gynecology (Corbelli et al., 2014; Pruitt et al., 2024). 10-year diabetes risks were calculated
using the Finnish Diabetes Risk Score (FINDRISC) estimator (Lindström and Tuomilehto,
2003). This tool is also commonly used by physicians and has been validated in international
populations (Zhang et al., 2014; Makrilakis et al., 2011). Both the BCRAT and FINDRISC
tools incorporate family history, and rely on health and demographic information that subjects
should readily know about themselves, as opposed to laboratory test results.

3.6 Post-Task Questionnaire

After the completion of all decision tasks and before receiving information about their
payoffs, subjects completed a questionnaire about their preventive health behaviors. These
questions related to the time since each subject last received screenings for high cholesterol,
high blood pressure, diabetes, and breast cancer, as well as how frequently they use sunscreen.
Choices for preventive screenings were categorical; either less than 1 year, 1 to 2 years, 2 to 3
years, 3 years or more, or Never. This information enables me to identify whether subjective
beliefs are predictive of preventive health behaviors, and the moderating effects of incentives
and response modes in this relationship.

3.7 Controlling for Online Searching

Monetary rewards for accuracy create an incentive for subjects to seek outside information,
and online experiments limit an experimenter’s ability to observe or prevent such behavior.
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While subjects were explicitly instructed to base their decisions only on their own knowledge
and experience, this request was unenforceable. Prior research confirms that online searching
can be a concern when beliefs are elicited for questions with readily searchable answers.
For instance, Grewenig et al. (2022) find that when a belief task involves a searchable fact,
incentives improve belief accuracy and increase time spent on the task - closely mirroring
behavior in an unincentivized treatment where subjects were explicitly encouraged to use
search engines. However, they find no such accuracy improvements when the answer is not
easily accessible online.

To identify whether subjects engaged in online searching during my experiment, I imple-
mented a control task designed to be highly searchable. Subjects were asked: “How many
grams of sugar are in one regular 12 fl oz can of Coca-Cola?” They then allocated their
allotted tokens across 10 bins ranging from 0 to 100 grams, following the same structure
as the risk tasks. The correct answer can be found online within seconds, making this an
effective benchmark for detecting search behavior.

Not all tasks in the experiment were equally searchable. In the 10-year risk tasks, online
tools exist that allow subjects to generate personalized risk scores, but these require time
and effort. For instance, various FINDRISC diabetes risk score calculators provide 10-year
estimates using the same health information collected in the pre-task questionnaire. Similarly,
for breast cancer risk, BCRAT online calculators exist but only offer 5-year and lifetime
estimates rather than 10-year projections.

For other health conditions, such as heart disease or stroke, some related online risk
calculators are available, but I am unaware of tools that allow for personalized prevalence
estimates based on multiple characteristics. If subjects attempted to refine their beliefs about
the prevalence of these conditions among similar subpopulations, they would likely find only
broad demographic trends (e.g., by sex, age, or race) rather than highly tailored estimates.
As a result, my analysis focuses primarily on responses from the prevalence tasks, where
online searchability is most limited.

To further assess potential search behavior and effort, I track two measures: total time
spent on the task, and “focused” time , the duration during which subjects exclusively viewed
the browser tab displaying the experimental interface. If a subject switched to another tab
or application, this counted toward total time but not focused time. The difference between
these two measures provides an indication of subjects who spent time “unfocused,” potentially
using external resources to update their beliefs. While this measure cannot detect if subjects
searched using another device, it has been validated in prior research. Graham (2024) employ
a similar method to detect cheating in online surveys by identifying instances where the
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survey window was obscured, finding that this approach captures 70% to 85% of search
attempts.

4 Results

4.1 Elicited Beliefs

To compare accuracy across health conditions and subjects with varying objective risk
levels, I normalized the reported beliefs. Normalization was done by indexing the bin
containing the subject’s predicted risk at zero and shifting other bins accordingly. This
approach provides a consistent framework for evaluating how subjective beliefs align with
objective probabilities, making it easier to identify systematic patterns of error. In the
experimental design, beliefs are measured in discrete units of “bins”, where each bin represents
a probability range with width 0.1. Figure 3 presents the pooled distributions of normalized
beliefs, aggregated by task and response mode.

Subjects systematically overestimate their risk of low-probability health outcomes, while
results for other health conditions are mixed. This trend is observable by comparing cor-
respondence between the mean of pooled distributions relative to predicted outcomes. For
less-common conditions such as stroke and skin cancer, the mean of each cumulative belief
distribution is 1-2 bins above the predicted risk, equivalent to errors in probability of 10-20%.
Evaluating these errors in terms of relative magnitudes is more striking. For 10-year breast
cancer risk, where the average predicted probability among eligible participants is only
3.42%, allocating one’s tokens 2 bins higher than the correct bin implies one has subjective
probabilities six to nine times higher than the objective estimate. This overestimation result
is consistent with unincentivized work examining subjective beliefs about the risk of breast
cancer Carman and Kooreman (2014).

Individual and pooled belief distributions are also quite diffuse. Interquartile ranges for
pooled belief distributions fall between 2 and 4 bins (equivalent to probability ranges of 0.2
to 0.4), indicating substantial imprecision in the subject pool’s cumulative ability to predict
their own health risks. At the individual level, subjects in distributional treatments also
demonstrated a substantial degree of uncertainty in their answers. In both treatments I100
and N100, subjects allocated tokens to a median of 3 bins per task, averaging similar levels
of confidence measured via standard deviation as well. Figure 4 displays a random sample of
responses from distributional treatments. Less than 10% of responses were degenerate beliefs,
where subjects allocated all 100 tokens to the same bin. This clearly shows that subjects are
ready to communicate a richness of information about their beliefs beyond what is typically
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captured by a point estimate, even in the absence of incentives. Researchers who choose to
elicit point estimates may then miss out on informative data.

4.2 Incentive Effects

The implemented formulation of the Quadratic Scoring Rule penalizes subjects equally
for allocating tokens to incorrect bins, regardless of how far those bins are from the correct
one. To better assess the accuracy of participants’ reported beliefs, I calculate the mean
absolute error (MAE) of each elicited belief. The MAE is defined as:

MAEj =
10∑
i=1

pi · |i− bj| , (2)

where i indexes each bin (from 1 to 10), pi denotes the proportion of tokens allocated to
bin i, and bj is the index of the bin corresponding to the correct answer for elicited belief
j. This measure captures the sum of absolute deviations between the participant’s reported
distribution and the objective estimate, weighted by the probability mass allocated to each
bin. In 100 token treatments, each token corresponds to a probability mass of 0.01, and
the singular token in 1 token treatments is equal to a probability mass of 1. This statistic
more heavily penalizes answers that are farther from the truth, unlike the formulation of
the QSR implemented for incentive-compatible belief elicitation in the experimental design
itself. An MAE measure may be interpreted as the average distance between a subject’s
token allocation and the true belief, measured in units of bins. MAE is always positive, and
lower values correspond to higher accuracy.

Monetary incentives increase accuracy in distributional treatments, but have no effect
on elicited point estimates. Figure 7 displays incentive effects on accuracy for all tasks. In
point estimate treatments, estimated effects have mixed signs and are insignificant at the 5%
confidence level. For distributional treatments, all estimated effect sizes are negative and are
statistically significant for 6 of the 10 health condition tasks. Averaging across prevalence
tasks, incentives reduce mean absolute error of distributional belief reports by 0.48. This
is equivalent to a shifting of beliefs 4.8 percentage points closer to the truth. Figure 8 also
shows these results are consistent when I limit the sample to non-searchers. This pattern
may suggest that under a simpler one-token reporting format, subjects do not have sufficient
means to increase the precision of their answers. However, when subjects are asked to report
complete distributions and account for their subjective confidence level in a more granular
manner, incentives do drive them to provide more accurate self-assessments of their health
risks.
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4.3 Response Mode Effects

To compare the effects of response mode on accuracy, I collapse elicited belief distributions
to their mean. Beliefs from point estimate treatments are closer to predicted risks than the
collapsed belief distributions. Across all treatments, distributional means have an average
absolute error of 2.23 bins, while point estimates perform better at an MAE of 1.78. This is
equivalent to a reduction in probability error of 4.5 percentage points. This effect size is also
similar in magnitude to the previously highlighted effect of incentives under distributional
response modes.

I find that point estimates are more accurate than distributional beliefs when subjects
are unincentivized, but these differences largely disappear when subjects are incentivized for
accuracy. Figure 9 displays differences in MAE, separating effects by incentive treatment
conditions. Across prevalence tasks, errors in treatment N100 are 7.0 percentage points
larger than in treatment N1, but this this number falls to 2.6 across treatments I100 and I1.
This suggests that incentives may drive improved truthful revelation only when reporting
beliefs is a more cognitively demanding task. It may require only marginal increases in effort
for subjects to tell the truth when reporting a point estimate relative to making a purely
random selection, but as subjects spent three times the duration to report belief distributions,
incentives may help to ensure that they are sufficiently motivated to allocate all tokens in a
precise manner.

4.4 Effort and Online Searching

I find that distributional response modes lead to large increases in time spent per task,
while incentives have comparatively smaller but still significant effects. Figure 5 displays
focused time per task, organized by treatment and condition. In point estimate treatments,
subjects spend an average of 12.9 seconds per task when unincentivized and 17.1 seconds
under incentives. By comparison, subjects in distributional treatments spend more than twice
as much focused time per task, averaging 36.3 seconds without incentives and 40.8 seconds
when incentivized. Pairwise t-tests confirm that average task times differ significantly across
all treatments at the 95% confidence level. The substantial difference between response modes
can be partially attributed to the additional physical effort required to allocate more tokens.
However, since time spent also varies by incentive condition while holding response mode
constant, this suggests that incentives lead to greater cognitive effort, prompting subjects to
reflect longer before submitting their responses.

Incentives also increase online searching during the control task by 8.1 percentage points,
a 62% increase. To identify likely use of external sources, I compare focused and total task
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time, classifying any subject who spent more than 5% of their control task time unfocused as
a “searcher.” Overall, 17% of participants meet this criterion, with the highest proportion
in Treatment I100 (25%) and the lowest in Treatment N1 (12%). Figure 6 illustrates these
differences, showing the proportion of searchers across all treatments and tasks. While fewer
than 10% of subjects spend appreciable time unfocused on tasks other than the control, I define
“searchers” based solely on control-task behavior, where online lookup is most straightforward.
As expected, searchers perform significantly better on the control question, with QSR scores
33.0 points higher than non-searchers in distributional treatments and 53.2 points higher in
point estimate treatments. In contrast, I find no significant differences in scoring between
searchers and non-searchers in non-control tasks. My findings on the effect of incentives on
the frequency and efficacy of online searching align with Grewenig et al. (2022), who similarly
show that incentives encourage greater online searching and have a stronger impact on belief
accuracy when answers are easily searchable. Confirmation of this result is an important note
for future work implementing incentivized health belief elicitation online, as careful attention
must be paid to the searchability of answers to a given task.

4.5 Beliefs and Health Behaviors

I examine the relationship between subjective beliefs and self-reported preventive health
behaviors. In the post-task questionnaire, participants indicate how long it has been since
they were last screened for a set of health conditions, as well as how often they use sunscreen.
I use responses to generate a binary variable indicating if the subject reported a screening
within the past three years. In the case of beliefs about skin cancer, I create an indicator
variable for whether subjects report using sunscreen sometimes, often, or always. I then
regress each indicator variable on the participant’s belief about their personal risk of the
condition, where beliefs from distributional treatments were collapsed to their mean.

I find a positive relationship between health risk perceptions and related preventive health
behaviors. Figure 10 displays regression results, where each coefficient represents the change in
probability of engaging in the preventive behavior associated with a 10% increase in subjective
risk. Coefficient estimates for breast cancer screening, sunscreen use, and cholesterol tests
are all approximately 3.5%. For someone who believes their risk of a disease is 50%, this
means they would be 17.5% more likely to have received a screening for this condition than
someone who believes they have little to no risk. I find smaller estimates for beliefs about
the risk of high blood pressure and diabetes.

Confidence also appears to play a role in the predictive power of subjective beliefs. I
calculate the standard deviation of beliefs from distributional treatments and split subjects
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into groups of high and low confidence at the median standard deviation. Results from
subsample regressions are shown in Figure 11. Beliefs for individuals in the high confidence
group are more predictive of preventive health behaviors than those from the low confidence
group. In the case of sunscreen use and beliefs about skin cancer, I find a strong divergence.
For individuals with high confidence in their skin cancer risk, I estimate a coefficient of
0.087, while for low confidence, this coefficient is 0.021. I find similar trends across all tasks,
where coefficient estimates from the high confidence group are greater than that in the low
confidence group. This implies that if two individuals hold the same mean belief about their
risk of disease, the one who feels more certain in their belief is more likely to have undertaken
preventive action against the condition.

5 Summary and Concluding Remarks

This paper addressed three key questions about measuring subjective health beliefs:
whether monetary incentives improve accuracy, whether distributional responses capture
valuable information beyond point estimates, and how confidence moderates the relationship
between beliefs and preventive behaviors. Using a 2×2 experimental design varying both
incentives and response modes in an online sample of U.S. adults, I found that monetary
incentives improve the accuracy of reported beliefs, but only when subjects can communicate
complete distributions - reducing mean absolute error by 4.8 percentage points. When limited
to point estimates, incentives showed no significant effect on accuracy. The results also
revealed systematic overestimation of low-probability health outcomes and demonstrated
that beliefs more strongly predict preventive behaviors when they exhibit high confidence.

The findings have important implications for both survey methodology and health policy.
For survey designers measuring health expectations, the choice of elicitation method should
align with specific research objectives. When the goal is simply to measure average beliefs
across a population, traditional point estimates perform adequately and incentives provide
limited value at potentially substantial cost. However, researchers interested in understanding
health behaviors may consider eliciting complete belief distributions with monetary incentives,
as this approach helps overcome the cognitive difficulty reporting more detailed risk perceptions
while improving predictive power. The systematic overestimation of low-probability health
risks replicates previous findings and indicates potential gaps in public health literacy that
could be addressed through targeted education initiatives. Additionally, the finding that
confidence moderates the belief-behavior relationship suggests that public health campaigns
may be more effective when they not only inform people about health risks but also help
them develop well-calibrated confidence in their risk assessments.
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Several limitations of this study warrant consideration. First, the online experimental
environment created challenges in controlling for subjects’ use of external information sources.
While I implemented methods to detect potential online searching and found evidence that
incentives do increase search attempts, the main results are robust to the exclusion of likely
searchers. Future work may benefit from controlled laboratory settings. Second, the recruited
sample was predominantly well-educated and experienced with online studies. (d’Uva et al.,
2020) find that errors in mortality expectations are largest for subjects with low educational
attainment and cognition, potentially altering the generalizability of my findings to population
surveys. Third, the relationship between beliefs and preventive behaviors was measured using
cross-sectional data, making it difficult to establish the causal direction of these associations.

Looking forward, this research opens several promising avenues for future investigation.
The experimental framework developed here could be extended to study belief updating
in response to new health information, potentially informing the design of public health
information campaigns. The treatment design could also be applied to other domains where
public uncertainty meets strong objective evidence, such as environmental risks or financial
planning. Further research might explore whether similar patterns emerge for relative rather
than absolute risk perceptions, as people often evaluate their health risks in comparison
to others. Finally, the role of confidence in moderating health behaviors warrants deeper
investigation, particularly regarding how different types of health information influence both
risk perceptions and confidence levels.
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Figures and Tables

Characteristic Subgroup Count Percentage

Treatment

I100 130 26.53%
I1 118 24.08%

N100 121 24.69%
N1 121 24.69%

Gender Male 261 53.27%
Female 229 46.73%

Age Group

35-44 120 24.49%
45-54 119 24.29%
55-64 121 24.69%
65-74 130 26.53%

Race

White, non-Hispanic 355 72.45%
Black, non-Hispanic 86 17.55%

Hispanic 22 4.49%
Other 27 5.51%

Education

Some High School 4 0.82%
High School Degree 64 13.06%

Some College/Associate’s Degree 169 34.49%
Bachelor’s Degree or More 253 51.63%

Income

0 to 24,999 84 17.14%
25,000 to 49,999 110 22.45%
50,000 to 74,999 131 26.73%
$75,000 or more 165 33.67%

Healthcare Visits

No Visits 54 11.02%
1 Visit 73 14.90%

2 to 3 Visits 189 38.57%
4 to 9 Visits 130 26.53%

10 or more visits 44 8.98%

Insurance Status Insured 455 92.86%
Uninsured 35 7.14%

Table 2: Sample Descriptive Statistics
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Figure 2: Subject Instructions Screenshot: Explanation of Personalized Risk
Estimates
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Figure 3: Pooled Normalized Beliefs
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Figure 4: Sample of Distributional Responses (Correct Bins Highlighted in Green)
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Figure 5: Focused Task Time

Figure 6: Proportion of Online Searching
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Figure 7: Incentive Effects

Figure 8: Incentive Effects Subsample Analysis - Sample Excluding Online
Searchers shown in Lighter Colors
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Figure 9: Response Mode Effects

Figure 10: Association between Subjective Beliefs and Preventive Behaviors
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Figure 11: Effects of Confidence on Predictive Power of Beliefs
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Appendix A Health Condition Definitions
Below are the definitions provided in the subject instructions

Arthritis: Disorders that primarily cause inflammation and swelling in the joints. This
includes osteoarthritis, degenerative arthritis, rheumatoid arthritis, and psoriatic arthritis.

Breast Cancer: Any cancer that starts specifically in the breast.

Cancer (other than skin cancer): Diseases in which cells in the body grow out of control.
This question includes cancers of the breast, lung, prostate, liver, colon, and bladder. This
task does not include skin cancer. We provide a separate task for cancers specifically from
the skin.

Diabetes: Prolonged high blood sugar levels due to either the pancreas not producing
enough insulin or the cells of the body not responding properly to the insulin produced. Also
called sugar diabetes.

Heart Disease: Diseases affecting blood supply to the heart, or the heart’s ability to supply
blood to the rest of the body. These include heart attack (also called myocardial infarc-
tion), coronary heart disease, angina (also called angina pectoris), and congestive heart failure.

High Blood Pressure: When the force of blood against the artery walls is consistently too
high. Also called hypertension.

High Cholesterol: Too much buildup of fats in the blood, potentially leading to the growth
of plaques and reduced blood flow.

Skin Cancer: Cancers that start in the skin, including melanoma, basal-cell, and squamous-
cell skin cancers.

Stroke: Poor blood flow to the brain, causing cell death. This includes both ischemic stroke
due to lack of blood flow, and hemorrhagic stroke due to bleeding.
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Appendix B Machine-Learning Algorithm

B.1 Data

I trained a machine learning algorithm following the approach of Einav et al. (2018), using
data from the National Health and Nutrition Examination Survey (NHANES), produced by
the US Centers for Disease Control. The sample was restricted to all adults over the age
of 20 with nonmissing covariates from waves 1999-2000 through 2017-2018. Of an available
55,081 survey responses, 15,182 observations contained at least one missing predictor variable,
yielding an analysis sample of 39,899. When the relevant outcome of interest for prediction
was one of the binary condition diagnoses, this indicator was excluded as a predictor. The
predictor variables used for all models are:

• Sex
• Age, age-squared, and categorical

age-group
• Race/ethnicity (non-Hispanic White,

Hispanic, non-Hispanic Black, other or
mixed race)

• Years of education
• Household income category in

CPI-adjusted 2023 dollars ($24,999 or
less, $25,000 to $49,999, $50,000 to
$74,999, $75,000 or more)

• Marital status
• Health insurance status
• Height, Weight, and BMI
• Alcohol use (ever having drank more

than 12 drinks of alcohol)
• Chronic alcohol use (ever consumed

4/5 drinks per day, almost every day)
• Current smoking status

• Ever having smoked 100 cigarettes
• Regular moderate physical activity
• Regular vigorous physical activity
• Immediate family history of diabetes
• Immediate family history of heart

disease before age 50
• Self-reported general health (Poor, Fair,

Good, Very Good, Excellent)
• Number of healthcare visits in the last

year
• Diagnosis of:

– Heart disease
– Arthritis
– Skin cancer
– Cancer (other than skin cancer)
– High cholesterol
– High blood pressure
– Stroke
– Diabetes

To avoid overfitting, data was divided into 70% train and 30% test samples. Using training
data, for each health condition from the prevalence tasks, the likelihood of a diagnosis of
the condition was predicted using three separate models: random forest, gradient-boosted
regression trees, and LASSO. I estimate each individual model using 5-fold cross-validation.
This means that for each set of tuning parameters tested, the training sample is split into 5
equal-sized folds, and estimated 5 times, where one fold is left out and used to test performance.
Performance for each model was measured using a negative Brier score loss function.
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B.2 Model Estimation and Hyperparameter Tuning

LASSO was estimated using the logistic regression function with L1 penalization from
the scikit-learn Python package, with maximum iterations set to 1000.

The gradient boosted regression tree model was trained using XGBoost. For each health
condition, a hyperparameter search was performed with the following grid:

• Number of estimators: 50, 100, 500
• Maximum tree depth: 2, 4, 6
• Learning rate: 0.01, 0.1, 0.2

The random forest model was implemented via scikit-learn’s random forest classifier,
with the following search grid:

• Number of estimators: 25, 50, 100
• Minimum samples per split: 25, 50, 100

Final hyperparameters for each model varied across health outcome variables.

B.3 Fitting the ensemble model

The predicted probability of each health condition was then estimated separately using
each model. The true diagnosis value was then regressed on the three estimated probabilities
by specifying a linear OLS regression without a constant. This results in the final ensemble
model output being a linear combination of the three individual model predictions, as below:

p̂ens = β̂rfp̂rf + β̂gbp̂gb + β̂lassop̂lasso (A0)

Where p̂x is the prediction from model x, and β̂x is the associated weight. Final ensemble
weights for each health condition are shown below in Table A1.
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Model Weights
Health Condition Random Forest XGBoost LASSO

Arthritis 0.1759 0.2419 0.5690
Diabetes 0.0954 0.7405 0.1937

Heart Disease 0.2511 0.2710 0.5200
High Blood Pressure 0.1357 0.4149 0.4700

High Cholesterol 0.1757 0.5930 0.2440
Other Cancers 0.0914 0.8708 0.1047

Skin Cancer 0.0000 0.6054 0.4102
Stroke 0.3883 0.0000 0.6710

Table A1: Final Ensemble Weights

B.4 Performance

Ensemble model performance metrics are shown below in Table A2 for both the NHANES
test data and the sample of Prolific subjects. Performance is comparable to existing work
estimating health risks (Shah et al., 2020; Soni and Varma, 2020; Zou et al., 2018), as well
as the clinical risk scores used in the experiment for 10-year risk estimates (Lindström and
Tuomilehto, 2003; Banegas et al., 2017).

NHANES Test Sample Prolific Sample

Health Condition Brier
Score

Log
Loss

AUC-
ROC

Brier
Score

Log
Loss

AUC-
ROC

Arthritis 0.1446 0.4394 0.8277 0.1917 0.5628 0.7401
Diabetes 0.0880 0.2833 0.8785 0.1503 0.4616 0.7904

Heart Disease 0.0642 0.2151 0.8791 0.0982 0.3264 0.7442
High Blood Pressure 0.1572 0.4782 0.8342 0.2235 0.6423 0.7059

High Cholesterol 0.1736 0.5175 0.7845 0.2059 0.5974 0.7426
Other Cancers 0.0613 0.2192 0.7989 0.0683 0.2545 0.6754

Skin Cancer 0.0269 0.1045 0.8754 0.0582 0.2116 0.7687
Stroke 0.0330 0.1248 0.8733 0.0404 0.1679 0.6987

Table A2: Machine Learning Model Performance Metrics

To check that each model is properly calibrated, reliability diagrams for each health
outcome are presented in Figure A1 to A8. The figures plot ensemble model predictions
against true health condition status for bins of individuals in the NHANES test sample and
the Prolific sample. Bins were constructed by sorting individuals according to their predicted
probability, and dividing them into equal-sized groups. Then, the average true probability of
the condition is calculated within each group. These reliability diagrams demonstrate good
concordance between predicted and true prevalence of chronic disease in both samples.
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Figure A1: Reliability Diagrams for Arthritis in NHANES (Left) and Prolific
(Right) Samples

Figure A2: Reliability Diagrams for Other Cancers in NHANES (Left) and
Prolific (Right) Samples
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Figure A3: Reliability Diagrams for Skin Cancer in NHANES (Left) and Prolific
(Right) Samples

Figure A4: Reliability Diagrams for Skin Cancer in NHANES (Left) and Prolific
(Right) Samples
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Figure A5: Reliability Diagrams for High Cholesterol in NHANES (Left) and
Prolific (Right) Samples

Figure A6: Reliability Diagrams for Diabetes in NHANES (Left) and Prolific
(Right) Samples
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Figure A7: Reliability Diagrams for Heart Disease in NHANES (Left) and Prolific
(Right) Samples

Figure A8: Reliability Diagrams for High Blood Pressure in NHANES (Left) and
Prolific (Right) Samples
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Appendix C Subject Instructions
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Reproductive health questions are only displayed for respondents who select Female for their biological sex on the Pre-Task 
Survey: Sociodemographic Characteristics page. 
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